IndahNya JendelaKu

     Analisis Kualitatif Unsur unsur senyawa organik
    Senyawa organik adalah golongan besar senyawa kimia yang molekulnya mengandung karbon, kecuali karbida, karbonat,dan oksida karbon. Studi mengenai senyawaan organik disebut kimia organik. Banyak diantara senyawaan organik, seperti protein, lemak, dan karbohidrat,merupakan komponen penting dalam biokimia.
    Di antara beberapa golongansenyawaan organik adalah senyawa alifatik, rantai karbon yang dapat diubah gugus fungsinya; hidrokarbon aromatik, senyawaan yang mengandung paling tidaksatu cincin benzena; senyawa heterosiklikyang mencakup atom-atom nonkarbon dalam struktur cincinnya; dan polimer, molekul rantaipanjang gugus berulang.
    Pembeda antara kimia organikdan anorganikadalah ada/tidaknya ikatan karbon-hidrogen. Sehingga, asam karbonattermasuk anorganik, sedangkan asam format,asam lemak pertama,organik.
    Nama "organik"merujuk pada sejarahnya, pada abad ke-19,yang dipercaya bahwa senyawa organik hanya bisa dibuat/disintesis dalam tubuhorganisme melalui vis vitalis - "life-force". Kebanyakan senyawaan kimiamurni dibuat secara artifisial.(Fessenden, 1982)Fessenden, 1982. Kimia Organik Edisi ketiga jilid 1 dan 2. jakarta : Erlangga.
    Ada dua cara yang relatif sederhana menentukan secara kualitatif apakah dalam suatu senyawa terdapat nitrogen, belerang atau halogen. Dalam metode ini, senyawa organik yang tidak diketahui diuraikan dengan menggunakan logam natrium, sehingga nitrogen, belerang atau halogen penyusun senyawa tersebut berturut-turut diubah menjadi natrium sianida, natrium sulfida atau natrium halida. Senyawa-senyawa anorganik ini kemudian diuji dengan cara seperti dibawah ini. Untuk pengujian nitrogen, larutan direaksikan dengan besi (ii) dan besi (iii) jika terdapat sianida, akan terbentuk endapan biru gelap yang ditunjukan dengan persamaan reaksi: N + 3 Fe+2 +4 Fe+3 Fe4[Fe(CN)6]3
    Kimia organik adalah percabangan studi ilmiah dari ilmu kimia mengenai struktur, sifat, komposisi, reaksi, dan sintesis senyawa organik. Senyawa organik dibangun terutama oleh karbon dan hidrogen, dan dapat mengandung unsur-unsur lain seperti nitrogen, oksigen, fosfor, halogen dan belerang.
    Definisi asli dari kimia organik ini berasal dari kesalahpahaman bahwa semua senyawa organik pasti berasal dari organisme hidup, namun telah dibuktikan bahwa ada beberapa perkecualian. Bahkan sebenarnya, kehidupan juga sangat bergantung pada kimia anorganik; sebagai contoh, banyak enzim yang mendasarkan kerjanya pada logam transisi seperti besi dan tembaga, juga gigi dan tulang yang komposisinya merupakan campuran dari senyama organik maupun anorganik. Contoh lainnya adalah larutan HCl, larutan ini berperan besar dalam proses pencernaan makanan yang hampir seluruh organisme (terutama organisme tingkat tinggi) memakai larutan HCl untuk mencerna makanannya, yang juga digolongkan dalam senyawa anorganik. Mengenai unsur karbon, kimia anorganik biasanya berkaitan dengan senyawa karbon yang sederhana yang tidak mengandung ikatan antar karbon misalnya oksida, garam, asam, karbid, dan mineral. Namun hal ini tidak berarti bahwa tidak ada senyawa karbon tunggal dalam senyawa organik misalnya metan dan turunannya.
 (Parlan, 2003).Parlan, 2003 Kimia Organik I. Malang JICA

Asam dan Basa Senyawa Organik
Teori Bronsted dan Lowry
    Di tahun 1923, kimiawan Denmark Johannes Nicolaus Bronsted (1879-1947) dan kimiawan Inggris Thomas Martin Lowry (1874-1936) secara independen mengusulkan teori asam basa baru, yang ternyata lebih umum.
Teori Bronsted dan Lowry asam: zat yang menghasilkan dan mendonorkan proton (H+) pada zat lain basa: zat yang dapat menerima proton (H+) dari zat lain.
Berdasarkan teori ini, reaksi antara gas HCl dan NH3 dapat dijelaskan sebagai reaksi asam basa, yakni
HCl(g) + NH3(g) –>NH4Cl(s) …
simbol (g) dan (s) menyatakan zat berwujud gas dan padat. Hidrogen khlorida mendonorkan proton pada amonia dan berperan sebagai asam.
    Menurut teori Bronsted dan Lowry, zat dapat berperan baik sebagai asam maupun basa. Bila zat tertentu lebih mudah melepas proton, zat ini akan berperan sebagai asam dan lawannya sebagai basa. Sebaliknya, bila zuatu zat lebih mudah menerima proton, zat ini akan berperan sebagai basa. Dalam suatu larutan asam dalam air, air berperan sebagai basa.
HCl    +    H2O    –>    Cl-    +    H3O+       
    Dalam reaksi di atas, perbedaan antara HCl dan Cl- adalah sebuah proton, dan perubahan antar keduanya adalah reversibel. Hubungan seperti ini disebut hubungan konjugat, dan pasangan HCl dan Cl- juga disebut sebagai pasangan asam-basa konjugat.
Larutan dalam air ion CO32- bersifat basa. Dalam reaksi antara ion CO32- dan H2O, yang pertama berperan sebagai basa dan yang kedua sebagai asam dan keduanya membentuk pasangan asam basa konjugat.
H2O    +    CO32-    –>    OH-    +    HCO3-       
    Zat disebut sebagai amfoter bila zat ini dapat berperan sebagao asam atau basa. Air adalah zat amfoter yang khas. Reaksi antara dua molekul air menghasilkan ion hidronium dan ion hidroksida adalah contoh khas reaksi zat amfoter
H2O    +    H2O    –>    OH-    +    H3O+
    Interaksi yang membentuk kristal natrium khlorida sangat kuat sebagaimana dapat disimpulkan dari titik lelehnya yang sangat tinggi (>1400 °C). Hal ini berarti bahwa dibutuhkan energi yang cukup besar untuk mendisosiasi kristal menjadi ion-ionnya. Namun natrium khlorida melarut dalam air. Hal ini berarti bahwa didapatkan stabilisasi akibat hidrasi ion, yakni interaksi antara ion dan molekul air polar.
NaCl –> Na+(aq) + Cl-(aq) (9.15)
    Sistem akan mengeluarkan energi yang besar (energi hidrasi) dan mendapatkan stabilisasi.
Selain itu, dengan disosiasi, derajat keacakan (atau entropi) sistem meningkat. Efek gabungannya, stabilisasi hidrasi dan meningkatnya entropi, cukup besar sebab kristal terdisosiasi sempurna. Tanpa stabilisqsi semacam ini, pelarutan natrium khlorida dalam air merupakan proses yang sukar seperti proses penguapannya.
    Disoasiasi elektrolit asam dan basa kuat adalah proses yang mirip. Dengan adanya stabilisasi ion yang terdisosiasi oleh hidrasi, asam dan basa kuat akan terdisosiasi sempurna. Dalam persamaan berikut, tanda (aq) dihilangkan walaupun hidrasi jelas terjadi.
HCl –> H+ + Cl- …
HNO3 –> H+ + NO3- …
H2SO4 –> H+ + HSO4- …
Demikian juga dalam hal basa kuat.
NaOH –> Na+ + OH-
KOH –> K+ + OH-
    Konstanta kesetimbangan disosiasi ini, Ka, disebut dengan konstanta disosiasi elektrolit atau konstanta disosiasi asam. Mengambil analogi dengan pH, pKa, didefinisikan sebagai:
pKa = -logKa
Ka = ([H+][CH3COO-])/[CH3COOH] = 1,75 x 10-5 mol dm-3,
pKa = 4,56 (25°C)
Dengan menggunakan pKa, nilai Ka yang sangat kecil diubah menjadi nilai yang mudah ditangani.
Jadi, menggunakan pKa sama dengan menggunakan pH. Kekuatan asam didefinisikan oleh konstanta disosiasi asamnya. Semakin besar konstanta disosiasi asamnya atau semakin kecil pKa-nya semakin kuat asam tersebut.
    Amonia adalah basa lemah, dan bila dilarutkan dalam air, sebagian akan bereaksi dengan air menghasilkan ion hidroksida OH-.
NH3 + H2O NH4+ + OH-
Dalam reaksi ini air berperan sebagai pelarut dan pada saat yang sama sebagai reagen. Konstanta kesetimbangan reaksi ini didefinisikan dalam persamaan:
K = [NH4+] [OH-]/[NH3] [H2O]
Konsentrasi air, [H2O], daat dianggap hampir tetap (55,5 mol dm-3) pada temperatur dan tekanan kamar, dan konstanta disosiasi basanya didefinisikan sebagai:
Kb = [NH4+] [OH-]/[NH3] = 1,76 x 10-5 mol dm-3
Di larutan dalam air, Kb dapat diubah menjadi Ka dengan bantuan Kw. Jadi,
Kb = Ka/Kw
Jadi kita dapat mengungkapkan kekuatan basa dengan kekuatan (dalam hal ini kelemahan) asam konjugatnya. Dengan prosedur ini, asam dan basa dibandingkan dengan standar yang sama.
ASAM POLIPROTIK
Asam sulfat H2SO4 adalah asam diprotik karena dapat melepas dua proton dalam dua tahap. Untuk asam poliprotik, didefinisikan lebih dari satu konstanta disosiasi. Konstanta disosiasi untuk tahap pertama dinyatakan sebagai K1, dan tahap kedua dengan K2.
Bila dibandingkan dengan tahap ionisasi pertamanya yang mengeluarkan proton pertama, ionisasi kedua, yakni pelepasan proton dari HSO4-, kurang ekstensif. Kecenderungan ini lebih nampak lagi pada asam fosfat, yang lebih lemah dari asam sulfat. Asam fosfat adalah asam trivalen dan terdisosiasi dalam tiga tahap berikut:
H3PO4 H+ + H2PO4-, K1 = 7,5 x 10-3 mol dm-3 (9.28)
H2PO4- H+ + HPO42-, K2 = 6,2 x 10-8 mol dm-3 (9.29)
HPO42- H+ + PO43-, K3 = 4,8 x 10-13 mol dm-3 (9.30)
Data ini menunjukkan bahwa asam yang terlibat dalam tahap yang berturutan semakin lemah. Mirip dengan ini, kalsium hidroksida Ca(OH)2 adalah basa divalen karena dapat melepas dua ion hidroksida.
f. Teori asam basa Lewis
Di tahun 1923 ketika Bronsted dan Lowry mengusulkan teori asam-basanya, Lewis juga mengusulkan teori asam basa baru juga. Lewis, yang juga mengusulkan teori oktet, memikirkan bahwa teori asam basa sebagai masalah dasar yang harus diselesaikan berlandaskan teori struktur atom, bukan berdasarkan hasil percobaan.
Teori asam basa Lewis
Asam: zat yang dapat menerima pasangan elektron.
Basa: zat yang dapat mendonorkan pasangan elektron.

Semua zat yang didefinisikan sebagai asam dalam teori Arrhenius juga merupakan asam dalam kerangka teori Lewis karena proton adalah akseptor pasangan elektron . Dalam reaksi netralisasi proton membentuk ikatan koordinat dengan ion hidroksida.
H+ + OH- H2O
Situasi ini sama dengan reaksi fasa gas yang pertama diterima sebagai reaksi asam basa dalam kerangka teori Bronsted dan Lowry.
HCl(g) + NH3(g) NH4Cl(s)
Dalam reaksi ini, proton dari HCl membentuk ikatan koordinat dengan pasangan elektron bebas atom nitrogen.
Keuntungan utama teori asam basa Lewis terletak pada fakta bahwa beberapa reaksi yang tidak dianggap sebagai reaksi asam basa dalam kerangka teori Arrhenius dan Bronsted Lowry terbukti sebagai reaksi asam basa dalam teori Lewis. Sebagai contoh reakasi antara boron trifluorida BF3 dan ion fluorida F-.
BF3 + F-–> BF4-
Reaksi ini melibatkan koordinasi boron trifluorida pada pasangan elektron bebas ion fluorida. Menurut teori asam basa Lewis, BF3 adalah asam. Untuk membedakan asam semacam BF3 dari asam protik (yang melepas proton, dengan kata lain, asam dalam kerangka teori Arrhenius dan Bronsted Lowry), asam ini disebut dengan asam Lewis. Boron membentuk senyawa yang tidak memenuhi aturan oktet, dan dengan demikian adalah contoh khas unsur yang membentuk asam Lewis.
Karena semua basa Bonsted Lowry mendonasikan pasangan elektronnya pada proton, basa ini juga merupakan basa Lewis. Namun, tidak semua asam Lewis adalah asam Bronsted Lowry sebagaimana dinyatakan dalam contoh di atas.
Dari ketiga definisi asam basa di atas, definisi Arrhenius yang paling terbatas. Teori Lewis meliputi asam basa yang paling luas. Sepanjang yang dibahas adalah reaksi di larutan dalam air, teori Bronsted Lowry paling mudah digunakan, tetapi teori Lewis lah yang paling tepat bila reaksi asam basa melibatkan senyawa tanpa proton.
HCl    +    H2O    –>    Cl-    +    H3O+
asam1        basa2        basakonjugat 1        asamkonjugat 2

Hidrokarbon
Dalam bidang kimia, hidrokarbon adalah sebuah senyawa yang terdiri dari unsur atom karbon (C) dan atom hidrogen (H). Seluruh hidrokarbon memiliki rantai karbon dan atom-atom hidrogen yang berikatan dengan rantai tersebut. Istilah tersebut digunakan juga sebagai pengertian dari hidrokarbon alifatik.
Sebagai contoh, metana (gas rawa) adalah hidrokarbon dengan satu atom karbon dan empat atom hidrogen: CH4. Etana adalah hidrokarbon (lebih terperinci, sebuah alkana) yang terdiri dari dua atom karbon bersatu dengan sebuah ikatan tunggal, masing-masing mengikat tiga atom karbon: C2H6. Propana memiliki tiga atom C (C3H8) dan seterusnya (CnH2·n+2).
Tipe-tipe hidrokarbon
Klasifikasi hidrokarbon yang dikelompokkan oleh tatanama organik adalah:
    Hidrokarbon jenuh/tersaturasi (alkana) adalah hidrokarbon yang paling sederhana. Hidrokarbon ini seluruhnya terdiri dari ikatan tunggal dan terikat dengan hidrogen. Rumus umum untuk hidrokarbon tersaturasi adalah CnH2n+2.[1] Hidrokarbon jenuh merupakan komposisi utama pada bahan bakar fosil dan ditemukan dalam bentuk rantai lurus maupun bercabang. Hidrokarbon dengan rumus molekul sama tapi rumus strukturnya berbeda dinamakan isomer struktur.[2]
    Hidrokarbon tak jenuh/tak tersaturasi adalah hidrokarbon yang memiliki satu atau lebih ikatan rangkap, baik rangkap dua maupun rangkap tiga. Hidrokarbon yang mempunyai ikatan rangkap dua disebut dengan alkena, dengan rumus umum CnH2n.[3] Hidrokarbon yang mempunyai ikatan rangkap tiga disebut alkuna, dengan rumus umum CnH2n-2.[4]
    Sikloalkana adalah hidrokarbon yang mengandung satu atau lebih cincin karbon. Rumus umum untuk hidrokarbon jenuh dengan 1 cincin adalah CnH2n.[2]
    Hidrokarbon aromatik, juga dikenal dengan arena, adalah hidrokarbon yang paling tidak mempunyai satu cincin aromatik.
Hidrokarbon dapat berbentuk gas (contohnya metana dan propana), cairan (contohnya heksana dan benzena), lilin atau padatan dengan titik didih rendah (contohnya paraffin wax dan naftalena) atau polimer (contohnya polietilena, polipropilena dan polistirena).
Ciri-ciri umum
Karena struktur molekulnya berbeda, maka rumus empiris antara hidrokarbon pun juga berbeda: jumlah hidrokarbon yang diikat pada alkena dan alkuna pasti lebih sedikit karena atom karbonnya berikatan rangkap.
Kemampuan hidrokarbon untuk berikatan dengan dirinya sendiri disebut dengan katenasi, dan menyebabkan hidrokarbon bisa membentuk senyawa-senyawa yang lebih kompleks, seperti sikloheksana atau arena seperti benzena. Kemampuan ini didapat karena karakteristik ikatan di antara atom karbon bersifat non-polar.
    Sesuai dengan teori ikatan valensi, atom karbon harus memenuhi aturan "4-hidrogen" yang menyatakan jumlah atom maksimum yang dapat berikatan dengan karbon, karena karbon mempunyai 4 elektron valensi. Dilihat dari elektron valensi ini, maka karbon mempunyai 4 elektron yang bisa membentuk ikatan kovalen atau ikatan dativ.Penggunaan
    Hidrokarbon adalah salah satu sumber energi paling penting di bumi. Penggunaan yang utama adalah sebagai sumber bahan bakar. Dalam bentuk padat, hidrokarbon adalah salah satu komposisi pembentuk aspal.[6]
    Hidrokarbon dulu juga pernah digunakan untuk pembuatan klorofluorokarbon, zat yang digunakan sebagai propelan pada semprotan nyamuk. Saat ini klorofluorokarbon tidak lagi digunakan karena memiliki efek buruk terhadap lapisan ozon.
Metana dan etana berbentuk gas dalam suhu ruangan dan tidak mudah dicairkan dengan tekanan begitu saja. Propana lebih mudah untuk dicairkan, dan biasanya dijual di tabung-tabung dalam bentuk cair. Butana sangat mudah dicairkan, sehingga lebih aman dan sering digunakan untuk pemantik rokok.     Pentana berbentuk cairan bening pada suhu ruangan, biasanya digunakan di industri sebagai pelarut wax dan gemuk. Heksana biasanya juga digunakan sebagai pelarut kimia dan termasuk dalam komposisi bensin.
    Heksana, heptana, oktana, nonana, dekana, termasuk dengan alkena dan beberapa sikloalkana merupakan komponen penting pada bensin, nafta, bahan bakar jet, dan pelarut industri. Dengan bertambahnya atom karbon, maka hidrokarbon yang berbentuk linear akan memiliki sifat viskositas dan titik didih lebih tinggi, dengan warna lebih gelap.
Pembakaran hidrokarbon
!Artikel utama untuk bagian ini adalah: Pembakaran
Saat ini, hidrokarbon merupakan sumber energi listrik dan panas utama dunia karena energi yang dihasilkannya ketika dibakar.[7] Energi hidrokarbon ini biasanya sering langsung digunakan sebagai pemanas di rumah-rumah, dalam bentuk minyak maupun gas alam. Hidrokarbon dibakar dan panasnya digunakan untuk menguapkan air, yang nanti uapnya disebarkan ke seluruh ruangan. Prinsip yang hampir sama digunakan di pembangkit-pembangkit listrik.
Ciri-ciri umum dari hidrokarbon adalah menghasilkan uap, karbon dioksida, dan panas selama pembakaran, dan oksigen diperlukan agar reaksi pembakaran dapat berlangsung. Berikut ini adalah contoh reaksi pembakaran metana:
    CH4 + 2 O2 → 2 H2O + CO2 + Energi
Jika udara miskin gas oksigen, maka akan terbentuk gas karbon monoksida (CO) dan air:
    2 CH4 + 3 O2 → 2CO + 4H2O
Contoh lainnya, reaksi pembakaran propana:
    C3H8 + 5 O2 → 4 H2O + 3 CO2 + Energi
    CnH2n+2 + (3n+1)/2 O2 → (n+1) H2O + n CO2 + Energi
Reaksi pembakaran hidrokarbon termasuk reaksi kimia eksotermik.
Alkohol
Alkohol sering dipakai untuk menyebut etanol, yang juga disebut grain alcohol; dan kadang untuk minuman yang mengandung alkohol. Hal ini disebabkan karena memang etanol yang digunakan sebagai bahan dasar pada minuman tersebut, bukan metanol, atau grup alkohol lainnya. Begitu juga dengan alkohol yang digunakan dalam dunia famasi. Alkohol yang dimaksudkan adalah etanol. Sebenarnya alkohol dalam ilmu kimia memiliki pengertian yang lebih luas lagi.
Dalam kimia, alkohol (atau alkanol) adalah istilah yang umum untuk senyawa organik apa pun yang memiliki gugus hidroksil (-OH) yang terikat pada atom karbon, yang ia sendiri terikat pada atom hidrogen dan/atau atom karbon lain.Struktur
Gugus fungsional alkohol adalah gugus hidroksil yang terikat pada karbon hibridisasi sp3. Ada tiga jenis utama alkohol - 'primer', 'sekunder, dan 'tersier'. Nama-nama ini merujuk pada jumlah karbon yang terikat pada karbon C-OH. Alkohol primer paling sederhana adalah metanol. Alkohol sekunder yang paling sederhana adalah 2-propanol, dan alkohol tersier paling sederhana adalah 2-metil-2-propanol.
Rumus kimia umum
Rumus kimia umum alkohol adalah CnH2n+1OH'
Penggunaan :
Pengawet
Alkohol juga dapat digunakan sebagai pengawet untuk hewan koleksi (yang ukurannya kecil).
Otomotif
Alkohol dapat digunakan sebagai bahan bakar otomotif. Etanol dan metanol dapat dibuat untuk membakar lebih bersih dibanding bensin atau diesel. Alkohol dapat digunakan sebagai antibeku pada radiator. Untuk menambah penampilan mesin pembakaran dalam, metanol dapat disuntikan kedalam mesin Turbocharger dan Supercharger. Ini akan mendinginkan masuknya udara kedalam pipa masuk, menyediakan masuknya udara yang lebih padat.
Nama-nama untuk alkohol
Nama sistematik
Dalam sistem tatanama IUPAC, nama-nama senyawa alkana kehilangan akhiran "e" dan diganti dengan "ol", contohnya metana menjadi metanol dan etana menjadi etanol. [1] Ketika dibutuhkan, posisi dari gugus hidroksil dapat diketahui dari nomor di antara nama alkana dan "ol": 1-propanol untuk CH3CH2CH2OH, 2-propanol untuk CH3CH(OH)CH3. Jika ada gugus fungsi yang lebih tinggi (seperti aldehida, keton, atau asam karboksilat, maka awalannya adalah "hidroksi",[1] contohnya: 1-hidroksi-2-propanon (CH3COCH2OH.Penggunaan tatanama IUPAC dipakai di publikasi-publikasi ilmiah dan diperlukan identifikasi detail terhadap substansi tersebut. Pada konteks lainnya, alkohol biasanya disebut dengan gugus alkil ditambah dengan kata "alkohol", misalnya metil alkohol, etil alkohol. Propil alkohol dapat disebut n-propil alkohol atau isopropil alkohol, tergantung dari dimana gugus fungsinya berikatan, berikatan pada karbon pertama atau kedua pada rantai propana.
Alkohol dapat dikelompokkan menjadi alohol primer, alkohol sekunder, dan alkohol tersier, tergantung dari berapa banyak atom karbon lain yang berikatan dengan atom karbon yang juga mengikat gugus hidroksil. Alkohol primer mempunyai rumus umum RCH2OH; alkohol sekunder rumus umumnya RR'CHOH; dan alkohol tersier rumus umumnya RR'R"COH, dimana R, R', dan R" melambangkan gugus alkil. Etanol dan n-propil alkohol adalah contoh alkohol primer; isopropil alkohol adalah contoh alkohol sekunder. Penggunaan awalan sek- (atau s-) dan tert- (atau t-), biasanya ditulis dalam huruf miring, dapat digunakan sebelum nama gugus alkil untuk membedakan alkohol sekunder dan alkohol tersier dari alkohol primer. Contohnya, isopropil alkohol juga dapat disebut sek-propil alkohol, dan alkohol tersier (CH3)3COH, atau 2-metil-2-propanol juga dapat disebut dengan tert-butil alkohol atau tert-butanol.Keasaman
Alkohol adalah asam lemah, karena perbedaan keelektronegatifan antara Oksigen dan Hidrogen pada gugus hidroksil, yang memampukan Hidrogen lepas dengan mudah. Bila di dekat Karbon Hidroksi terdapat gugus penarik elektron seperti fenil atau halogen, maka keasaman meningkat. Sebaliknya, semakin banyak gugus pendorong elektron seperti rantai alkana, keasaman menurun.
Produksi
Pada industri, alkohol diproduksi dengan beberapa cara:
    Dengan fermentasi menggunakan glukosa yang diproduksi dari gula dari hidrolisis amilum. Fermentasi alkohol ini dibantu dengan khamir dan suhu dibawah 37 °C. Selain fermentasi glukosa, proses pembuatan alkohol juga dapat dibuat dengan mengkonversi aukrosa dengan enzim invertase menjadi glukosa dan fruktosa, setelah itu glukosa dikonversi lagi menjadi etanol dengan enzim zymase.
    Dengan hidrasi langsung menggunakan etilena (Hidrasi etilena)[3] atau alkana lain dari proses cracking dari minyak bumi yang didistilasi.
Aldehida dan Keton
Pengertian aldehid dan keton
Aldehid dan keton sebagai senyawa karbonil
Aldehid dan keton adalah senyawa-senyawa sederhana yang mengandung sebuah gugus karbonil – sebuah ikatan rangkap C=O. Aldehid dan keton termasuk senyawa yang sederhana jika ditinjau berdasarkan tidak adanya gugus-gugus reaktif yang lain seperti -OH atau -Cl yang terikat langsung pada atom karbon di gugus karbonil – seperti yang bisa ditemukan misalnya pada asam-asam karboksilat yang mengandung gugus -COOH.
Contoh-contoh aldehid
Pada aldehid, gugus karbonil memiliki satu atom hidrogen yang terikat padanya bersama dengan salah satu dari gugus berikut:
    atom hidrogen lain
    atau, yang lebih umum, sebuah gugus hidrokarbon yang bisa berupa gugus alkil atau gugus yang mengandung sebuah cincin benzen.
Pada pembahasan kali ini, kita tidak akan menyinggung tentang aldehid yang mengandung cincin benzen.
Pada gambar di atas kita bisa melihat bahwa keduanya memiliki ujung molekul yang sama persis. Yang membedakan hanya kompleksitas gugus lain yang terikat.
Jika kita menuliskan rumus molekul untuk molekul-molekul di atas, maka gugus aldehid (gugus karbonil yang mengikat atom hidrogen) selalunya dituliskan sebagai -CHO – dan tidak pernah dituliskan sebagai COH. Oleh karena itu, penulisan rumus molekul aldehid terkadang sulit dibedakan dengan alkohol. Misalnya etanal dituliskan sebagai CH3CHO dan metanal sebagai HCHO.
Penamaan aldehid didasarkan pada jumlah total atom karbon yang terdapat dalam rantai terpanjang – termasuk atom karbon yang terdapat pada gugus karbonil. Jika ada gugus samping yang terikat pada rantai terpanjang tersebut, maka atom karbon pada gugus karbonil harus selalu dianggap sebagai atom karbon nomor 1.
Contoh-contoh keton
Pada keton, gugus karbonil memiliki dua gugus hidrokarbon yang terikat padanya. Sekali lagi, gugus tersebut bisa berupa gugus alkil atau gugus yang mengandung cincin benzen. Disini kita hanya akan berfokus pada keton yang mengandung gugus alkil untuk menyederhanakan pembahasan.
Perlu diperhatikan bahwa pada keton tidak pernah ada atom hidrogen yang terikat pada gugus karbonil.
Propanon biasanya dituliskan sebagai CH3COCH3. Diperlukannya penomoran atom karbon pada keton-keton yang lebih panjang harus selalu diperhatikan. Pada pentanon, gugus karbonil bisa terletak di tengah rantai atau di samping karbon ujung – menghasilkan pentan-3-ena atau pentan-2-on.Perbedaan aldehid dan keton
Aldehid berbeda dengan keton karena memiliki sebuah atom hidrogen yang terikat pada gugus karbonilnya. Ini menyebabkan aldehid sangat mudah teroksidasi.
Sebagai contoh, etanal, CH3CHO, sangat mudah dioksiasi baik menjadi asam etanoat, CH3COOH, atau ion etanoat, CH3COO-.
Keton tidak memiliki atom hidrogen tersebut sehingga tidak mudah dioksidasi. Keton hanya bisa dioksidasi dengan menggunakan agen pengoksidasi kuat yang memiliki kemampuan untuk memutus ikatan karbon-karbon.
Oksidasi aldehid dan keton juga dibahas dalam modul belajar online ini pada sebuah halaman khusus di topik aldehid dan keton.
Sifat-sifat fisik
    Titik didih
Aldehid sederhana seperti metanal memiliki wujud gas (titik didih -21°C), dan etanal memiliki titik didih +21°C. Ini berarti bahwa etanal akan mendidih pada suhu yang mendekati suhu kamar.
Aladehid dan keton lainnya berwujud cair, dengan titik didih yang semakin meningkat apabila molekul semakin besar.
Besarnya titik didih dikendalikan oleh kekuatan gaya-gaya antar-molekul.
    Gaya dispersi van der Waals
Gaya tarik ini menjadi lebih kuat apabila molekul menjadi lebih panjang dan memiliki lebih banyak elektron. Peningkatan gaya tarik ini akan meningkatkan ukuran dipol-dipol temporer yang terbentuk. Inilah sebabnya mengapa titik didih meningkat apabila jumlah atom karbon dalam rantai juga meningkat – baik pada aldehid maupun pada keton.
    Gaya tarik dipol-dipol van der Waals
Aldehid dan keton adalah molekul polar karena adanya ikatan rangkap C=O. Seperti halnya gaya-gaya dispersi, juga akan ada gaya tarik antara dipol-dipol permanen pada molekul-molekul yang berdekatan.
Ini berarti bahwa titik didih akan menjadi lebih tinggi dibanding titik didih hidrokarbon yang berukuran sama – yang mana hanya memiliki gaya dispersi.
Mari kita membandingkan titik didih dari tiga senyawa hidrokarbon yang memiliki besar molekul yang mirip. Ketiga senyawa ini memiliki panjang rantai yang sama, dan jumlah elektronnya juga mirip (walaupun tidak identik).
molekul    tipe    titik didih (°C)
CH3CH2CH3    alkana    -42
CH3CHO    aldehid    +21
CH3CH2OH    alkohol    +78
Pada tabel di atas kita bisa melihat bahwa aldehid (yang memiliki gaya tarik dipol-dipol dan gaya tarik dispersi) memiliki titik didih yang lebih tinggi dari alkana berukuran sebanding yang hanya memiliki gaya dispersi.
Akan tetapi, titik didih aldehid lebih rendah dari titik didih alkohol. Pada alkohol, terdapat ikatan hidrogen ditambah dengan dua jenis gaya-tarik antar molekul lainnya (gaya-tarik dipol-dipol dan gaya-tarik dispersi).
Walaupun aldehid dan keton merupakan molekul yang sangat polar, namun keduanya tidak memiliki atom hidrogen yang terikat langsung pada oksigen, sehingga tidak bisa membentuk ikatan hidrogen sesamanya.
Kelarutan dalam air
Aldehid dan keton yang kecil dapat larut secara bebas dalam air tetapi kelarutannya berkurang seiring dengan pertambahan panjang rantai. Sebagai contoh, metanal, etanal dan propanon – yang merupakan aldehid dan keton berukuran kecil – dapat bercampur dengan air pada semua perbandingan volume.
Alasan mengapa aldehid dan keton yang kecil dapat larut dalam air adalah bahwa walaupun aldehid dan keton tidak bisa saling berikatan hidrogen sesamanya, namun keduanya bisa berikatan hidrogen dengan molekul air.
Salah satu dari atom hidrogen yang sedikit bermuatan positif dalam sebuah molekul air bisa tertarik dengan baik ke salah satu pasangan elektron bebas pada atom oksigen dari sebuah aldehid atau keton untuk membentuk sebuah ikatan hidrogen.
Identifikasi, Karbohidrat, Lemak dan Protein

    Karbohidrat adalah zat morganik utama yang terdapat dalam tumbuhan. Dan biasanya mewakili 50-75% dari jumlah bahan kering dalam bahan makanan ternak. Sebagian besar dapat dalam biji, buah, dan akar. Kelompok karbohidrat yang tersedia adalah monosakarida (glukosa, fruktosa, manosa), disakarida dan oligosakarida (sukrosa, laktosa, trehalosa, maltosa) (Anggordi, 1973).
Pengujian kualitatif karbohidrat dilakukan dengan uji molish (uji umum) untuk mengetahui kandungan senyawa hidroksi metil furfural, uji benedict untuk mengetahui kandungan gula pereduksi. Uji yang terakhir adalah dengan uji iod untuk mengetahui kandungan pati suatu bahan makanan.
Karbohidrat berfungsi sebagai sumber ribosa untuk sintesis DNA dan RNA, serta dapat diubah menjadi asam amino non esensial (Lehninger, 1993). Karbohidrat merupakan sumber energi utama pada sebagian besar hewan herbivor atau omnivor (Gallego et al., 1994).
Karbohidrat adalah zat-zat organik yang mengandung zat karbon (C), hidrogen (H) dan oksigen (O) dalam perbandingan yang berbeda-beda. Zat hidrogen dan oksigen biasanya terdapat dalam karbohidrat dalam perbandingan yang sama seperti dalam air.
Secara garis besar karbohidrat terbagi menjadi 3 kelompok;
-          Monosakarida, terdiri atas 3-6 atom C dan zat ini tidak dapat lagi dihidrolisis oleh larutan asam dalam air menjadi karbohidrat yg lebih sederhana.
-          Disakarida, senyawanya terbentuk dari 2 molekul monosakarida yg sejenis atau tidak. Disakarida dpt dihidrolisis oleh larutan asam dalam air sehingga terurai menjadi 2 molekul monosakarida.
-          Polisakarida, senyawa yg terdiri dari gabungan molekul2 monosakarida yg banyak jumlahnya, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida.
    Monosakarida mengandung gugus keton atau aldosa. Awalan aldo- dan keto- menunjukan jenis gugus aldehida atau keton di dalam suatu sakarida, sedangkan akhiran –osa menunjukkan karbohidrat. Jumlah atom karbon dalam suatu karbohidrat ditunjukkan dengan menggunakan tri, titra, penta, heksa, heksa dan seterusnya. Berdasarkan jumlah atom karbon asimetri pembentuknya. Monosakarida dapat dioksidasi dengan pereaksi Tollens, Br2/H2O , HNO3 dan HIO4.
    Disakarida adalah suatu karbohidrat yang jika dihidrolisis menghasilkan 2 molekul monosakarida seperti maltosa dapat mereduksi Fehling atau Tollens sehingga disebut gula pereduksi.
    Polisakarida adalah senyawa yang terdiri dari ratusan bahkan ribuan monomer monosakarida di alam. Selulosa merupakan komponen utama kayu dan serat tanaman sedangkan katun yang berasal dari kapas merupakan selulosa meurni dengan rumus molekul (C5H10O5)n. Pati terdapat pada beras, singkong, gandum, jagung, kentang dan sebagainya. Terdiri dari 20% amilum dan 80% amilopektin. Glokogen mirip amilopektin tetapi lebih sedikit percabangannya. Sangat penting perannya bagi manusa dan binatang, yaitu sebagai cadangan energi bagi tubuhnya dan banyak disimpan pada hati dan jaringan otot yang jarang digunakan untuk bergerak atau beraktifitas.
  
     Lipid (yunani, lipos=lemak) adalah segolongan besar senyawa tak larut air yang terdapat di alam. Lipid cenderung larut dalam pelarut organik seperti eter dan kloroform. Membran semua sel terdiri  dari lipid. Lipid utama dalam membran sel ialah fosfolipid, glikolipid, dan dalam sel hewan, kolesterol,postaglandin, steroid.
Steroid merupakan senyawa seperti lipid karena dapat diekstrak dari jaringan tumbuhan  dan hewan dengan pelarut organik. Sekarang banyak para atlet wanita menggunakan steroid buatan untuk mengembangkan otot tanpa menimbulkan kejantanan
            Lemak biasanya disebut lipid atau lipoida, adalah suatu senyawaan biomolekul,mempunyai sifat umum larut dalam pelarut-pelarut organik, seperti eter, kloroform dan benzena, tetapi tidak larut dalam air. Berbeda dengan karbohidrat, lipid tidak terdiri atas satu macam keturunan senyawaan tetapi terdiri atas beberapa kelompok senyawaan. Sebagian besar lipid merupakan ester. Senyawaan-senyawaan yang termasuk ke dalam golongan lipid adalah lemak, minyak, wax dan senyawaan-senyawaan lain yang sifat-sifatnya sama dengan senyawaan itu, walaupun strukturnya sangat berlainan.
            Sebagai senyawaan biomolekul, lipid dalam hewan dan tumbuhan mempunyai berbagai macam kepentingan, antara lain sebagai sumber energi dan gizi. Selain itu, lipid mempunyai beberapa fungsi struktural.
            Sebagai sumber energi dan gizi, lipid merupakan penyusun bahan makanan yang istimewa, karena bukan saja nilai energinya paling tinggi dibandingkan dengan senyawaan lain, tetapi juga berperan ganda sebagai sumber energi dan pelarut vitamin A, vitamin D, vitamin E, vitamin K dan asam-asam lemak, baik esensial maupun non-esensial. Disamping itu, dalam tubuh lipid disimpan sebagai cadangan energi dalam jaringan adiposa.
            Lipid di dalam tubuh berfungsi sebagai sumber energi, pelarut vitamin, bahan insulasi, penusunan struktur membran sel, penyusun sel saraf dan hormon.
            Fungsi struktural lipid yaitu mengisi struktur tubbuh di bawah kulit misalnya di sekitar organ-organ tubuh yang halus, lunak, dan vital, mengisi rongga-rongga yang kosong dan memperindah bentuk tubuh terutama pada wanita. Pada wanita, lemak yang terdapat di bawah kulit lebih banyak daripada yang terdapat pada laki-laki. Dengan demikian berarti lipid juga berfungsi sebagai ”isolator” tubuh, baik terhadap perubahan suhu maupun terhadap benturan-benturan. Selain itu, lipid banyak terdapat dalam jaringan saraf dan otak. Sehingga lipid juga berfungsi dalam pengaturan gerak organ-organ tubuh.
            Lipid juga dapat berkombinasi dengan protein membentuk sejenis senyawaan yang disebut lipoprotein. Senyawa ini adalah konstituen sel yang penting, terdapat dalam membran sel dan mitokondria. Transportasi lipid dalam darah adalah dalam bentuk senyawaan lipoprotein.
            Selain sebagai penyusun jaringan hewan dan tumbuhan, bahan makanan dan fungsi faal lainnya, lipid juga merupakan bahan industri. Beberapa jenis barang-barang kebutuhan manusia seperti cat, sabun, detergen kosmetik dan beberapa macam polimer, memakai jenis-jenis lipid tertentu sebagai bahan dasarnya.
Penggolongan Lipid
a.      Lipid Sederhana
Lipid sederhana adalah ester-ester asam lemak yang mengandung gugus lain selain alkohol. Berdasarkan jenis alkohol, lipid sederhan dibagi menjadi:
·         Lemak dan minyak, yaitu ester asam-asm lemak dengan gliserol.
·         Malam (wax), yaitu ester asam-asam lemak dengan alkohol monohidroksi berantai panjang.
b.            Lipid Majemuk
            Lipid majemuk adalah ester-ester asam lemak yang mengandung gugs lain selain alkohol dan asam lemak. Kelas lipid terdiri atas:
·         Fosfolipid, yaitu lipid yang selain mengandung asam dan glisero, terdapat juga gugus fosfat, basa-basa nitrogen dan substituen lainnya.
·         Serebrosida (glikolipid), yaitu senyawaan-senyawaan yang terdiri atas asam-asam lemak dengan karbohidrat, mengandung nitrogen tetapi tidak mempunyai gugus fosfat.
·         Lipid majemuk yang lain, yaitu senyawaan-senyawaan yang tidak dapat digolongkanke dalam fosfolipid dan serebrosida. Termasuk ke dalam kelompok ini, antara lain sulfolipid, aminolipid, dan juga lipoprptein.
c.             Turunan Lipid
         Turunan lipid adalah senyawa-senyawa hasil hidrolisis kedua kelas atas. Ke dalam kelas ini dimasukkan senyawa yang secara umum kelarutannya masih menyerupai lipid dan kebanyakan tidak dapat dihidrolisis lagi. Senyawa-senyawa tersebut adalah asam-asam lemak, baik yang jenuh maupun yang tidak jenuh, alkohol berat (rantai karbon pamjang), dan sterol (sterol adalah alkohol steroid), aldehid berat dan benda-benda keton. Gliserida atau disebut juga asilgliserol, kolesterol dan ester-esternya disebut lipid netral.
Struktur
         Molekul lemak adalah suatu gliserida, yakni ester gliserol dengan asam lemak. Asam lemaknya adalah asam karbooksilat jenuh dengan jumlah atom karbon genap, antara 4 sampai 24 buah. Jumlah yang genap ini terjadi karena asam-asam lemak alamiah merupakan hasil proses biosintesis dari senyawaan beratom karbon dua (asetil koenzim-A).
         Minyak dan lemak pada hakikatnya adalah sama, yakni suatu trigliserida. Akan tetapi asam lemak yang terikat pada minyak adalah asam yang tidak jenuh. Ketidakjenuhan inilah yang menyebabkan trigliserida ini pada suhu ruang berwujud cair.
         Lemak umumnya berasal dari hewan, sedangkan minyak terutama dihasilkan oleh tumbuh-tumbuhan. Lemak hewani terdapat pada hampir semua jaringan tubuh, terutama jaringan yang langsung berada d bawah kulit, di antara otot-otot, di sekeliling organ-organ tubuh  dan sumsum tulang. Dalam tumbuha-tumbuhan seperti minyak kelapa, minyak kacang, minyak palm, minyak jagung, dan minyak zaitun berasal dari biji pohon yang bersangkutan.
         Lemak yang terdapat dalam tubuh, yang disebut juga depot fat, berasal dari dua sumber. Pertama, dibentuk oleh tubuh sendiri dari bahan-bahan (metabolit) yang terdapat dalam makanan. Kedua, berasal dari luar tubuhyang diperoleh dari makanan. Lemak yang dibuat oleh tubuh (pembuatannya berlangsung dalam tubuh) sifat-sifatnya spesifik untuk tubuuh yang bersangkutan.

      Seperti asam amino, protein yang larut dalam air akan membentuk ion dengan muatan (+) dan (-). Dalam suasana asam protein akan membentuk ion (+) dan dalam suasana basa akan membentuk ion (-). Pada titik isoelektriknya sifatnya sama dengan Zwitterion asam amino. Titik isoelektrik protein mempunyai arti penting karena sifat fisika dan kimianya erat hubungan dengan pH pada titik isoelektrik ini. Pada pH di atas titik isoelektriknya, protein bermuatan (+) sedangkan di bawah titik isoelektriknya protein bermuatan (-). Oleh karena itu untuk mengendapkan protein dengan ion logam (Ag+, Ca++, Zn++, Hg++, Fe++, Cu++, dan Pb++) diperlukan pH larutan di atas titik isoelektrik, sedangkan pengendapan oleh ion negatif (ion salisalat, triklorasetat, pikrat, tanat dan sulfosalisilat) memerlukan pH di bawah titik isoelektrik.
       Berdasarkan sifat pengendapan ini putih telur atau susu dapat digunakan sebagai antidotum atau penawar racun apabila seseorang keracunan logam berat.
Protein termasuk dalam senyawa yang terpenting dalam organisme hewan. Sesuai dengan peranannya protein berasal dari kata proteos yang artinya pertama. “Protein” adalah poliamina dan jika dihidrolisis protein menghasilkan asam-asam amino hanya 20 asam amino yang ;azim kita temui dalam protein tumbuhan dan hewan. Namun kedua puluh asam amino ini dapat dihubungkan dengan berbagi cara membentuk otot, enzyme, dan lainya. Asam-aam amino yang terdapat pada protein adalah asam α-aminokarboksilat. Variasi dalam struktur monomer-monomer ini terjadi dalam rantai samping. Asa amino tidak selalu bersifat seperti senyawasenyawa organic. Titik leleh diatas 200oC, sedangkan kebanyakan senyawa organic dengan bobot molekul sekitar itu berupa cairan pada temperature kamar, asam amino larut dalam pelarut air dan organic, tetapi tidak larut dalam pelarut nonpolar. Asam amino memiliki moment dipole yang besar, juga mereka bersifat kurang asam dibandingkan sebagian besar asam katrboksilat dan kuarang basa dibandingkan sebagian besar senyawa amina yang lain (Fessenden, 1989: 363-364). Beberapa jenis protein sangat peka terhadap perubahan lingkungannya. Suatu protein memiliki arti bagi tubu apabila protein tersebut di dalam tubuh dapat melakukan aktivitas biokimiawi yang menunjang kebutuhan tubuh. Aktivitas ini banyak mengandung struktur dan konformasi protein yang tepat. Apabila konformasi protein berubah, misalnya karena perubahan suhu, pH atau karena reaksi dengan senyawa lain, ion-ion logam maka aktivitas biokimianya akan berkurang. Enzim merupaka suatu contoh protein memiliki aktifitas katalis reaksi di dalam tubuh. Ion logam berat yang masuk ke dalam tubuh akan bereaksi dengan sebagian enzim di dalam tubuh, sehingga menyebabkan koagulasi atau pengumpalan (Poedjiadi, 1994).
Peptide sederhana mengandung dua, tiga, empat, atau lebih residu asam amino, masing-masing disebut dipeptida, tripeptida, tetrapeptida, dan seterusnya. Peptide didapatkan dari hidrolisis rantai panjang suatu polipeptida (protein).
Sebagaimana asam amino, peptide memiliki pH isolistrik (pHI). Reaksi kimia peptide disebabkan karena adanya gugus junh –NH2, R, dan –COOH. Seperti pada asam amino, gugus -NH2 pada peptide dapat direaksikan dengan 2,4 dinitrofenil florobenzene fenilisotianat dan gugus –COOH. Dapat diesterfikasi dengan dan direduksi. Caa reaksi berwarna yang lain untuk pepetida dan protein tetapi tidak untuk asam amino bebas, adalah reaksi biuret. Reaksi ini terjadi antara pepetida atau protein dengan CuSO4 dan alkali, yang menghasilkan senyaw kompleks berwarna ungu (Wirahardikusumah, 2008).

Tidak ada komentar:

Posting Komentar

Copyright © IndahNya JendelaKu Urang-kurai